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Relationship between exponentials and sinusoids
 Euler’s formula:

 Therefore, in signal analysis, we usual regard “frequency” to be  w in the 
exponential vector 𝑒!"#.

 The frequency spectrum is therefore a plot of the amplitude (and phase) 
projected onto exponential components         for different w. e jωt
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cos 𝜔𝑡 =
𝑒!"# + 𝑒$!"#
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sin 𝜔𝑡 =
𝑒!"# − 𝑒$!"#
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𝑒!"# = cos 𝜔𝑡 + 𝑗𝑠𝑖𝑛(𝜔𝑡)

𝑒$!"# = cos −𝜔𝑡 + 𝑗𝑠𝑖𝑛 −𝜔𝑡

= cos 𝜔𝑡 − 𝑗𝑠𝑖𝑛 𝜔𝑡
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𝑒345 viewed as a VECTOR

Re

Im (j)

• 𝑒!"# is the building block, each at different frequency ω.
• Can be viewed as a VECTOR as show below.
• The magnitude of the vector  |ejwt | is 1. 
• This vector is rotating in a complex plane at a rate of w rads/sec in the 

direction shown.
• cos(wt) and sin(wt) are just the projection of the this vector on the REAL (x-

axis) and IMAGINERY (y-axis) axes in this diagram.
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Fourier Series in three forms
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Definition of Fourier Transform

 The forward and inverse Fourier Transform are defined for aperiodic 
signal as:

 Fourier series is used for periodic signals.
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Define three useful functions

 A unit rectangular window function rect(x):

 The unit impulse function d(t) (Dirac impulse):

 Interpolation function sinc(x):

        or 
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More about sinc(x) function

 sinc(x) is an even function of x.

 sinc(x) = 0 when sin(x) = 0 
except when x=0, i.e. x = ±p, 
±2p, ±3p…..

 sinc(0) = 1 (derived with 
L’Hôpital’s rule)

 sinc(x) is the product of an 
oscillating signal sin(x) and a 
monotonically decreasing 
function 1/x.  Therefore it is a 
damping oscillation with period 
of 2p with amplitude decreasing 
as 1/x.
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Fourier Transform of     x(t) = rect(t/t)

 Evaluation:

 Since rect(t/t) = 1 for -t/2 < t < t/2 and 0 otherwise 

⇔

Bandwidth » 2p/t
FT

FT
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Fourier Transform of  unit impulse  x(t) = d(t)

 Using the sampling property of the impulse, we get:

 IMPORTANT – Unit impulse contains COMPONENT AT EVERY 
FREQUENCY.
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Inverse Fourier Transform of  d(w)

 Using the sampling property of the impulse, we get:

 Spectrum of a constant (i.e. d.c.) signal x(t) = 1 is an impulse 2pd(w).

or



Lecture 4 Slide 11PYKC  17 Jan 2025 DESE50002 -  Electronics 2

Inverse Fourier Transform of  d(w - w0)

 Using the sampling property of the impulse, we get:

 Spectrum of an everlasting exponential  ejw0t   is a single impulse at w=w0.

and

or
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Fourier Transform of everlasting sinusoid cos w0t

 Remember Euler’s formula:

 Use results from previous slide, we get:

 Spectrum of cosine signal has two impulses at positive and negative 
frequencies.
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Fourier Transform of any periodic signal

 Fourier series of a periodic signal x(t) with period T0 is given by:

 Take Fourier transform of both sides, we get:

 This is rather obvious!
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Fourier Transform of a unit impulse train

 Consider an impulse train 

 The Fourier series of this impulse train can be shown to be:

 Therefore using results from the last slide (slide 13), we get:
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Fourier Transform Table (1)
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Fourier Transform Table (2)
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Fourier Transform Table (3)



Lecture 4 Slide 18PYKC  17 Jan 2025 DESE50002 -  Electronics 2

Three Big Ideas

1. Euler formula provides an alternative way to represent sine and cosine 
functions in terms of 𝑒!"# and 𝑒$!"#.

2. Extracting a portion of a signal x(t) for -t/2 ≤ t ≤ t /2 can be modelled by 
multiplying x(t) by the rectangular function rect(x/ t).

3. The Fourier Transform of an infinite train of unit impulses is again an infinite 
train of unit impulses.

cos 𝜔𝑡 =
𝑒!"# + 𝑒$!"#

2
sin 𝜔𝑡 =

𝑒!"# − 𝑒$!"#

2𝑗

FT


