Lecture 4

Frequency Domain Analysis and Fourier Transform

Peter Y K Cheung

Dyson School of Design Engineering Imperial College London

URL: www.ee.ic.ac.uk/pcheung/teaching/DE2_EE/ E-mail: p.cheung@imperial.ac.uk

Relationship between exponentials and sinusoids

Euler's formula:

$$e^{j\omega t} = \cos(\omega t) + i \sin(\omega t)$$

$$e^{-j\omega t} = \cos(-\omega t) + j\sin(-\omega t)$$
$$= \cos(\omega t) - i\sin(\omega t)$$

$$\cos(\omega t) = \frac{e^{j\omega t} + e^{-j\omega t}}{2}$$
$$\sin(\omega t) = \frac{e^{j\omega t} - e^{-j\omega t}}{2j}$$

- Therefore, in signal analysis, we usual regard "frequency" to be ω in the exponential vector $e^{j\omega t}$.
- The frequency spectrum is therefore a plot of the amplitude (and phase) projected onto exponential components $e^{j\omega t}$ for different ω .

$e^{j\omega t}$ viewed as a VECTOR

- $e^{j\omega t}$ is the building block, each at different frequency ω .
- Can be viewed as a VECTOR as show below.
- The magnitude of the vector $|e^{j\omega t}|$ is 1.
- This vector is rotating in a complex plane at a rate of ω rads/sec in the direction shown.
- cos(ωt) and sin(ωt) are just the projection of the this vector on the REAL (xaxis) and IMAGINERY (y-axis) axes in this diagram.

Fourier Series in three forms

$$\int_{-T_0} \int_{-T_0}^{x_{T_0}(t)} \int_{0}^{x_{T_0}(t)} \int_{0}^{x_{T_0}(t)} \left(x(t) = a_0 + \sum_{n=1}^{\infty} (a_n \cos n\omega_0 t + b_n \sin n\omega_0 t) \right) \\ a_n = \frac{2}{T_0} \int_{0}^{T_0} x(t) \cos n\omega_0 t \, dt \qquad b_n = \frac{2}{T_0} \int_{0}^{T_0} x(t) \sin n\omega_0 t \, dt$$

$$x(t) = C_0 + \sum_{n=1}^{\infty} C_n \cos(n\omega_0 t + \theta_n) \qquad C_n = \sqrt{a_n^2 + b_n^2} \\ \theta_n = tan^{-1} \left(\frac{b_n}{a_n}\right)$$

$$x(t) = \sum_{-\infty}^{\infty} D_n e^{j(n\omega_0 t + \theta_n)} \qquad D_n = \frac{1}{T_0} \int_{-T_{o/2}}^{T_{o/2}} x(t) e^{-jn\omega_0 t} dt$$

Definition of Fourier Transform

- The forward and inverse Fourier Transform are defined for aperiodic signal as: $X(\omega) = \mathcal{F}[x(t)] = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$ $x(t) = \mathcal{F}^{-1}[X(\omega)] = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega)e^{j\omega t}d\omega$
- Fourier series is used for periodic signals.

Define three useful functions

$$\operatorname{sinc}(x) = \frac{\sin x}{x}$$
 or $\operatorname{sinc}(x) = \frac{\sin \pi x}{\pi x}$

More about sinc(x) function

- sinc(x) is an even function of x.
- sinc(x) = 0 when sin(x) = 0
 except when x=0, i.e. x = ±π, ±2π, ±3π....
- sinc(0) = 1 (derived with L'Hôpital's rule)
- sinc(x) is the product of an oscillating signal sin(x) and a monotonically decreasing function 1/x. Therefore it is a damping oscillation with period of 2π with amplitude decreasing as 1/x.

Fourier Transform of $x(t) = rect(t/\tau)$

Fourier Transform of unit impulse $x(t) = \delta(t)$

• Using the sampling property of the impulse, we get:

$$\mathcal{F}[\delta(t)] = \int_{-\infty}^{\infty} \delta(t) e^{-j\omega t} dt = 1$$

 IMPORTANT – Unit impulse contains COMPONENT AT EVERY FREQUENCY.

$$\delta(t) \iff 1$$

Inverse Fourier Transform of $\delta(\omega)$

• Using the sampling property of the impulse, we get:

$$\mathcal{F}^{-1}[\delta(\omega)] = \frac{1}{2\pi} \int_{-\infty}^{\infty} \delta(\omega) e^{j\omega t} d\omega = \frac{1}{2\pi}$$

• Spectrum of a constant (i.e. d.c.) signal x(t) = 1 is an impulse $2\pi\delta(\omega)$.

$$\frac{1}{2\pi} \iff \delta(\omega)$$
 or $1 \iff 2\pi\delta(\omega)$

Inverse Fourier Transform of $\delta(\omega - \omega_0)$

• Using the sampling property of the impulse, we get:

$$\mathcal{F}^{-1}[\delta(\omega-\omega_0)] = \frac{1}{2\pi} \int_{-\infty}^{\infty} \delta(\omega-\omega_0) e^{j\omega t} d\omega = \frac{1}{2\pi} e^{j\omega_0 t}$$

• Spectrum of an everlasting exponential $e^{j\omega_0 t}$ is a single impulse at $\omega = \omega_0$.

$$\frac{1}{2\pi}e^{j\omega_0 t} \iff \delta(\omega - \omega_0)$$
or
$$e^{j\omega_0 t} \iff 2\pi\delta(\omega - \omega_0)$$
and
$$e^{-j\omega_0 t} \iff 2\pi\delta(\omega + \omega_0)$$

Fourier Transform of everlasting sinusoid cos $\omega_0 t$

- Remember Euler's formula: $\cos \omega_0 t = \frac{1}{2}(e^{j\omega_0 t} + e^{-j\omega_0 t})$
- Use results from previous slide, we get:

$$\cos \omega_0 t \iff \pi [\delta(\omega + \omega_0) + \delta(\omega - \omega_0)]$$

Spectrum of cosine signal has two impulses at positive and negative frequencies.

Fourier Transform of any periodic signal

• Fourier series of a periodic signal x(t) with period T_0 is given by:

$$x(t) = \sum_{n=-\infty}^{\infty} D_n e^{jn\omega_0 t}$$
 $\omega_0 = \frac{2\pi}{T_0}$

• Take Fourier transform of both sides, we get:

$$X(\omega) = 2\pi \sum_{n=-\infty}^{\infty} D_n \delta(\omega - n\omega_0)$$

• This is rather obvious!

Fourier Transform of a unit impulse train

- Consider an impulse train $\delta_{T_0}(t) = \sum_{-\infty}^{\infty} \delta(t nT_0)$
- The Fourier series of this impulse train can be shown to be: $\delta_{T_0}(t) = \sum_{n=0}^{\infty} D_n e^{jn\omega_0 t} \quad \text{where} \quad \omega_0 = \frac{2\pi}{T_0} \quad \text{and} \quad D_n = \frac{1}{T_0}$
- Therefore using results from the last slide (slide 13), we get:

Fourier Transform Table (1)

No.	x(t)	$X(\omega)$	
1	$e^{-at}u(t)$	$\frac{1}{a+j\omega}$	<i>a</i> > 0
2	$e^{at}u(-t)$	$\frac{1}{a-j\omega}$	a > 0
3	$e^{-a t }$	$\frac{2a}{a^2 + \omega^2}$	a > 0
4	$te^{-at}u(t)$	$\frac{1}{(a+j\omega)^2}$	a > 0
5	$t^n e^{-at} u(t)$	$\frac{n!}{(a+j\omega)^{n+1}}$	a > 0
6	$\delta(t)$	1	
7	1	$2\pi\delta(\omega)$	
8	$e^{j\omega_0 t}$	$2\pi\delta(\omega-\omega_0)$	

Fourier Transform Table (2)

No.	x(t)	$X(\boldsymbol{\omega})$	
9	$\cos \omega_0 t$	$\pi[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)]$	
10	$\sin \omega_0 t$	$j\pi[\delta(\omega+\omega_0)-\delta(\omega-\omega_0)]$	
11	u(t)	$\pi\delta(\omega) + \frac{1}{i\omega}$	
12	sgn t	$\frac{2}{j\omega}$	
13	$\cos \omega_0 t u(t)$	$\frac{\pi}{2}[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)]+\frac{j\omega}{\omega_0^2-\omega^2}$	
14	$\sin \omega_0 t u(t)$	$\frac{\pi}{2j}[\delta(\omega-\omega_0)-\delta(\omega+\omega_0)]+\frac{\omega_0}{\omega_0^2-\omega^2}$	
15	$e^{-at}\sin\omega_0 tu(t)$	$\frac{\omega_0}{(a+j\omega)^2+\omega_0^2}$	<i>a</i> > 0
16	$e^{-at}\cos\omega_0 t u(t)$	$\frac{a+j\omega}{(a+j\omega)^2+\omega_0^2}$	<i>a</i> > 0

Fourier Transform Table (3)

No.	x(t)	$X(\omega)$	
16	$e^{-at}\cos\omega_0 tu(t)$	$\frac{a+j\omega}{(a+j\omega)^2+\omega_0^2}$	<i>a</i> > 0
17	$\operatorname{rect}\left(\frac{t}{\tau}\right)$	$\tau \operatorname{sinc}\left(\frac{\omega\tau}{2}\right)$	
18	$\frac{W}{\pi}$ sinc (Wt)	$\operatorname{rect}\left(\frac{\omega}{2W}\right)$	
19	$\Delta\left(\frac{t}{\tau}\right)$	$\frac{\tau}{2}\operatorname{sinc}^2\left(\frac{\omega\tau}{4}\right)$	
20	$\frac{W}{2\pi}\operatorname{sinc}^2\left(\frac{Wt}{2}\right)$	$\Delta\left(\frac{\omega}{2W}\right)$	
21	$\sum_{n=-\infty}^{\infty} \delta(t-nT)$	$\omega_0 \sum_{n=-\infty}^{\infty} \delta(\omega - n\omega_0)$	$\omega_0 = \frac{2\pi}{T}$
22	$e^{-t^2/2\sigma^2}$	$\sigma \sqrt{2\pi} e^{-\sigma^2 \omega^2/2}$	

Three Big Ideas

1. Euler formula provides an alternative way to represent sine and cosine functions in terms of $e^{j\omega t}$ and $e^{-j\omega t}$.

$$\cos(\omega t) = \frac{e^{j\omega t} + e^{-j\omega t}}{2} \qquad \qquad \sin(\omega t) = \frac{e^{j\omega t} - e^{-j\omega t}}{2j}$$

- **2.** Extracting a portion of a signal x(t) for $-\tau/2 \le t \le \tau/2$ can be modelled by multiplying x(t) by the rectangular function $rect(x/\tau)$.
- **3**. The Fourier Transform of an infinite train of unit impulses is again an infinite train of unit impulses.

